tallized from 95% ethanol yielding 167 mg. (90%) of yelloworange leaflets, m.p. 304-305°. The reported value⁹ for benzo [b]acridone made in another manner is 303°.

Acknowledgment. The authors would like to acknowledge financial aid in the form of a grant (M-1239) from the National Institutes of Mental Health, which supports a program of research on the chemistry of the benzophenothiazines.

DEPARTMENT OF CHEMISTRY University of Tennessee KNOXVILLE 16. TENN.

Reactions of Carbon Monoxide with Thiols, Sulfides, and Disulfides

H. E. HOLMQUIST AND J. E. CARNAHAN

Received March 2, 1960

The literature on reactions of carbon monoxide with thiols is limited to those in which either acetvlene¹ or an olefin² is present as a third component. The products are the thiol esters of the carbonylated unsaturate. There are no accounts of the direct reaction of carbon monoxide with thiols or their derivatives.

We now wish to report that carbon monoxide reacts with thiols, disulfides, and sulfides to give thiol esters in accordance with Equations 1-3 in the presence of a cobalt carbonyl catalyst or certain metal oxide catalysts at 250-300° and 100-1000 atm. Results are summarized in Table I.

$$2RSH + CO \longrightarrow RCOSR + H_2S$$
(1)

$$RSSR + 2CO \longrightarrow RCOSR + COS \qquad (2)$$

$$RSR + CO \longrightarrow RCOSR$$
 (3)

$$RSH + CO \longrightarrow RH + COS \tag{4}$$

Carbonylation of thiols. Both aliphatic and aromatic thiols undergo carbonylation according to equation 1 to give thiol esters in yields up to 46%at conversions up to 73%. The catalysts used were dicobalt octacarbonyl and a supported cobalt oxide preparation that presumably was converted to the carbonyl under conditions of the experiment. The temperatures employed were 250–275° at a pressure of 100-1000 atm. of carbon monoxide. The reaction times were two to sixteen hours and the most convenient solvents were benzene and toluene.

No reaction took place between carbon monoxide and thiophenol at 70° in the presence of cobalt carbonyl, nor at 275° with no catalyst. In some runs, carboxylic acids were found. Thus, carbonylation of benzenethiol without solvent gave only benzoic acid. In one benzenethiol run, the gaseous products were collected and found by mass spectrophotometric analysis to contain mainly hydrogen sulfide and carbon oxysulfide.

The carbonylation of 1,3-butanedithiol gave a thiolactone (I or II). The available data do not permit an unequivocal choice between the two possible structures.

$$CH_{3}CHSHCH_{2}CH_{2}SH \xrightarrow{CO}_{CH_{3}}S \xrightarrow{O} Or \xrightarrow{CH_{3}}S \xrightarrow{O} I$$

Attempted carbonylation of a gem-dithiol, 3,5,5trimethylhexane-1,1-dithiol, at 70° and 150° gave mainly the corresponding monothiol and a small amount of the carboxylic acid. At 250°, the monothiol and the thiol ester derived from the monothiol according to equation 1 were obtained. An attempt to add hydrogen sulfide to an olefin and carbonylate the resulting thiol in situ led to only a 1% yield of thiol ester. Benzyl mercaptan was the only thiol which gave products containing no sulfur. 1,2-Diphenylethane and 1,2,3-triphenylpropane were isolated.

An important competing reaction to thiol ester formation apparently was reduction of thiol to hydrocarbon (Equation 4). Attempts were not made to isolate the hydrocarbon in most of the experiments, but in the case of 3,5,5-trimethylhexane-1-thiol approximately as much hydrocarbon was found as thiol ester. With benzothiazole-2-thiol, benzothiazole was the sole product. Similarly, o-mercaptobenzoic acid gave benzoic acid.

Carbonylation of disulfides. The conditions for the carbonylation of disulfides were similar to those used for thiols. The cobalt carbonyl-catalyzed reaction of carbon monoxide with *n*-butyl disulfide yielded *n*-butyl thiol-*n*-valerate. Phenyl thiolbenzoate was formed from carbon monoxide and phenyl disulfide using a chromium oxide-onalumina catalyst, the only catalyst not containing cobalt successfully employed in these reactions. The corresponding sulfides were isolated as byproducts.

Carbonylation of sulfides. At 300° and 1000 atm. of carbon monoxide, phenyl sulfide, and *n*-butyl sulfide were converted to thiol esters in small vields using dicobalt octacarbonyl as catalyst. Under the same conditions, phenyl methyl sulfide gave only methyl thiolbenzoate. No evidence for formation of the isomeric phenyl thiolacetate was obtained.

- (4) E. Schjånberg, Ber., 74, 1751 (1941).
 (5) W. M. Bruner, Ind. Eng. Chem., 41, 2860 (1949).
- (6) E. M. Gutman and W. J. Hickinbottom, J. Chem.

1934 (1915). (8) O. Jeger, J. Norymberski, S. Szpilfogel, and V. Prelog, Helv. chim. acta., 29, 684 (1946).

⁽¹⁾ W. Reppe, Ann., 582, 1 (1953).

⁽²⁾ W. Reppe and H. Kröper, Ann., 582, 38 (1953).

⁽³⁾ R. Schiller and R. Otto, Ber., 9, 1634 (1876).

Soc., 2064 (1951). (7) L. S. Pratt and E. E. Reid, J. Am. Chem. Soc., 37,

					Pres- sure.	Principal	Yield.	ver- sion.		Carbon	uot	Hydrogen	ogen	Sulfur	fur
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sulfur Compound	Solvent	Catalyst	Temp.			%	%	B.P. or M.P.	Caled.	Found	Calcd.	Found	Caled.	Found
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzenethiol Benzenethiol	$\mathbf{B}^{\mathbf{a}}$	Co ₂ (CO)8 Co ₂ (CO)8	275 ⁶ 275	965 1000	Phenyl thiolbenzoate ^e Phenyl thiolbenzoate Banzoie acid	46 24 6	49 65 65	54.5-55.54.0 y 1 2014	72.87	73.20^{f}	4.70	5.10	14.96	14.79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Benzenethiol Benzenethiol	n n	Co ₂ (CO) ₈ Cobalt oxide	$\begin{array}{c} 275\\ 275\end{array}$	100 990	Phenyl thiolbenzoate Phenyl thiolbenzoate	29 15	22	544.1 1						
$ \begin{array}{c ccccc} B & Co_{0}(0), & 255 & 1000 & -Tolyl thiolcolunter & 18 & 50 & 60^{4} & 74.35 & 74.24 & 5.82 & 5.51 \\ & 0 & AAO, & 255 & 1000 & Buy it thiolcolunter & 23 & 75 & 90 -584 & 10.41 & 10.60 & 18.40 & 1 \\ & 0 & Co_{0}(O), & 255 & 1000 & Ruy it thiolcolunter & 15 & 60 & 76 (8 mm.)' & 51.67 & 51.88^{m} & 0.94 & 7.23 \\ & 0 & 0 & Co_{0}(O), & 250 & 1000 & Ruy it thiolcolunter & 15 & 60 & 76 (8 mm.)' & 51.67 & 51.88^{m} & 0.94 & 7.23 \\ & 0 & 0 & Co_{0}(O), & 250 & 1000 & 35.5 Trimethylherp & 10 & 80 -82 (0.6 mm.)' & 67.43 & 67.32 & 12.40 & 20.00 & 1 \\ & 1.4hiol & 1.4hiol & 80 -82 (0.6 mm.)' & 67.43 & 67.32 & 12.58 & 12.40 & 20.00 & 1 \\ & 1.4hiol & 1.4hiol & 80 -82 (0.6 mm.)' & 67.43 & 67.32 & 12.58 & 12.40 & 20.00 & 1 \\ & 1.4hiol & 35.5 Trimethylherp & 10 & 80 -82 (0.6 mm.)' & 67.43 & 67.32 & 12.58 & 12.40 & 20.00 & 1 \\ & 1.4hiol & 35.5 Trimethylherp & 10 & 80 -82 (0.6 mm.)' & 67.43 & 67.32 & 12.58 & 12.40 & 20.00 & 1 \\ & 1.4hiol & 35.5 Trimethylherp & 10 & 80 -82 (0.6 mm.)' & 67.43 & 67.32 & 12.58 & 12.40 & 20.00 & 1 \\ & 1.4hiol & 35.5 Trimethylherp & 10 & 80 -82 (0.6 mm.)' & 67.43 & 67.32 & 12.58 & 12.40 & 20.00 & 1 \\ & 1.4hiol & 35.5 Trimethylherp & 10 & 80 -82 (0.6 mm.)' & 67.43 & 67.32 & 12.58 & 12.40 & 20.00 & 1 \\ & 1.4hiol & 11 & 123 (0.8 mm.)' & 67.43 & 67.32 & 12.58 & 12.40 & 20.01 & 1 \\ & 1.4hiol & 11 & 123 (0.8 mm.)' & 60.76 (0.8 mm.)' & 67.43 & 67.50 & 10.20 & 1 \\ & 1.4hiol & 0.1000 & 35.5 Trimethylerp & 1 & 123 -126 (0.8 mm.)' & 67.43 & 67.23 & 10.20 & 1 \\ & 1.66(O)_{11} & 275 & 1000 & 2.24 Trimethylerp & 1 & 123 -126 (0.8 mm.)' & 67.43 & 67.23 & 10.20 & 10.20 & 1 \\ & 1.66(O)_{11} & 275 & 1000 & 2.24 Trimethylerp & 1 & 123 -126 (0.8 mm.)' & 67.43 & 67.23 & 10.20 & 2.24 Trimethylerp & 10.20 & 11.24 & 12.24 & 11.7 -120 & 10.20 & 10.20 & 10.20 & 10.20 & 10.20 & 1$	Benzenethiol	Z	on Al ₂ O ₃ Co ₂ (CO) ₈	275	995	Benzoic acid	43		1204				1		
$ \begin{array}{cccccc} 0.01 M_{10}^{10}, & 275 & 000 & n-Butyl thiol-n-valenate & 19 & 67 (2.6 mm.)^{6} & 62.88^{1} & 10.41 & 10.69 & 18.40 & 1 \\ \hline 0.01 CO(0_{18} & 275 & 900 & geographic acid \\ \hline 0.01 Methylthiolutyro- & 15 & 60 & 76 (8 mm.)^{7} & 51.67 & 51.88^{m} & 6.94 & 7.23 \\ \hline 0.02 (CO)_{18} & 150 & 950 & 35.5 Trimethylthera. & 58 & 32 (0.8 mm.)^{n} & 67.43 & 67.92 & 12.58 & 12.40 & 20.00 & 1 \\ \hline 1.56 & 1.56 & 51.88^{m} & 6.94 & 7.23 \\ \hline 1.56 & 1.50 & 35.5 Trimethylthera. & 58 & 32 (0.8 mm.)^{n} & 67.43 & 67.92 & 12.58 & 12.40 & 20.00 & 1 \\ \hline 1.56 & 1.56 & 51.88^{m} & 6.94 & 7.23 \\ \hline 1.56 & 1.56 & 1000 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.55 & 1000 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.55 & 1000 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.55 & 1000 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.56 & 0.5 mm.)^{n} & 67.43 & 67.92 & 12.58 & 12.40 & 20.00 & 1 \\ \hline 1.56 & 1100 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.55 & 0.000 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.55 & 0.000 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.57 & 0.000 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.57 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.57 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 & 96 & 96 \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 35.5 Trimethylthera. & 24 & 75-76 (6 mm.)^{n} \\ \hline 1.10 & 0.00 & 95 & 95 & 96 & 96 & 76 &$	o-Toluenethiol o-Toluenethiol	рщ	Co ₂ (CO) ₈ Cobalt oxide	$275 \\ 300$	1000 950	o-Tolyl thiol-o-toluate ^c o-Tolyl thiol-o-toluate ^c	81 82 83 82	50 73	60d 5053d	74.35	74.24	5.82	5.51		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I-Butanethiol	в	on Al2O3 Co2(CU)s	275	1000	n-Butyl thiol-n-valerate	19		$67 (2.6 \text{ mm.})^{h}$	62.03	62.88^{i}	10.41	10.69	18.40	18.80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-Methyl-1-butanethiol 1,3-Butanedithiol	n n	Co2(CO) Co2(CO)	275 250	960 1000	Isocaproic acid Methylthiobutyro-	17 15	09	$42 \ (0.2 \text{ mm.})^{7}$ 76 (8 mm.) ¹	51.67	51.88m	6.94	7.23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,5,5-Trimethylhexane-	В	$Co_2(CO)_5$	150	950	lactonc" 3,5,5-Trimethylhexane- 1 +hiol	58		32 (0.8 mm.) ⁿ	67.43	67.92	12.58	12.40	20.00	19.47
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1) 1-41 (11101					4,6,6-Trimethylhep-	10		80–82 (0.6 mm.) ^o						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,5,5-Trimethylhexane-	в	$Co_2(CO)_5$	250	1000	Lanoic acid 3,5,5-Trimethylhexane- 1-thiol	24		75-76 (6 mm.)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,					3,5,5-Trimethylhexyl thiol-4,6,6-trimethyl-	11		123 (0.8 mm.) ^p		6			10.20	10.64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						heptanoate 4,6,6-Trimethylhep-	×		60–76 (0.5 mm.)						
, eyelo- N $C_{02}(CO)_{s}$ 275 1000 $Cyclohexyl thiolecyclo- 1$ 93 $(0.7 mm.)$ ^t 3.2,4-Trimethylhexane 15 117-129 ^t ^t 13 Chromiun 275 950 Phenyl thiolecyclo- 1 93 $(0.7 mm.)$ ^t N $C_{02}(CO)_{s}$ 250 990 <i>n</i> -Butyl thiolenzoate 31 53 ^d N $C_{02}(CO)_{s}$ 300 1000 <i>n</i> -Butyl thiol- <i>n</i> -valerate 30 85 $(5 mm.)^{u}$ hfide B $C_{02}(CO)_{s}$ 300 1000 <i>n</i> -Butyl thiolenzoate 19 26 $(1.3 mm.)^{u}$ thiol B $C_{02}(CO)_{s}$ 275 1000 Benzoi e add 2 43 $117-120 (17 mm.)^{o}$ ^u 23.72 1000 Benzoi e add 66 $(1.3 mm.)$	3, 5, 5-Trimethylhexane- 1-thiol	n	Cobalt oxide on Al ₂ O ₃	275	1000	3,5,5-Trimethylhexyl thiol-4,6,6-trimethyl-	17		$123{-}126~(0.8~{ m mm.})$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hvdrogen sulfide, cvclo-	N	Co ₂ (CO)	275	1000	heptanoato 2,2,4-Trimethylhexane Cyclohexyl thioleyclo-	15 1		$117-129^{r}$ 93 (0.7 mm.)	1					
$ \begin{array}{ccccccc} \mbox{oxide on} & \mbox{alg O}_{3} & $	hexene* Phenyl disulfide	В	Chromium	275	950	hexanecarboxylate Phenyl thiolbenzoate	31		53 <i>d</i>						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	- - - - - -		$\begin{array}{c} \text{oxide on} \\ \text{Al}_{2}\text{O}_{3} \\ \text{Al}_{2}\text{O}_{3} \end{array}$		000	-	90								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ı-Butyl dısulfide ı-Butyl sulfide	zz	Co ₂ (CO), Co ₂ (CO),	$300 \\ 300 $	990 1000	<i>n</i> -Butyl thiol- <i>n</i> -valerate <i>n</i> -Butyl thiol- <i>n</i> -valerate	08 7	17	85 (5 mm.)" 52 (0.8 mm.)"						
B $(O_{0}(CU)_{k} = 275' - 1000$ Benzoic acid 2 43 120^{4} 23.72 80 66 (1.3 mm.) 23.72	Phenyl sulfide Phenyl methyl sulfide	ന ന	Co ₂ (CO), Co ₂ (CO),	908 300	000 1000	Phenyl thiolbenzoate ^e Methyl thiolbenzoate ^e	$^{19}_{21}$	\$ 8 8	117-120 (17 mm.) [®]		я				
	Benzothiazole-2-thiol		$Co_2(CO)_8$		1000	Benzoic acid Benzothiazole	80 2	43	120^{d} 66 (1.3 mm.)					23.72	23.66

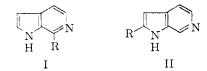
TABLE I. REACTIONS OF CARBON MONOXIDE WITH SULFUR COMPOUNDS

DECEMBER 1960

2241

EXPERIMENTAL

The reactions, details of which are given in Table I, were carried out in 400-ml. stainless steel shaker tubes for 14–16 hr. unless otherwise noted. The amount of catalyst used was 1-5% of the weight of the sulfur compound. The products were isolated and purified by conventional methods.


Contribution No. 609 from Central Research Department Experimental Station E. I. du Pont de Nemours and Co. Wilmington, Del.

Pyrrolopyridines. III. The Madelung Cyclization of 3-Acylamino-4-picolines^{1,2}

WERNER HERZ AND D. R. K. MURTY³

Received April 8, 1960

Literature methods for the synthesis of pyrrolo-(2,3-c)-pyridine (6-azaindole, I, R = H) are not very satisfactory. Koenigs and Fulde⁴ reported the preparation of 2-methylpyrrolo(2,3-c)pyridine (II, R = CH₃) in 23% yield by a Madelung cyclization of 3-acetamido-4-picoline, the later in turn being made by a tedious route. Clemo and Holt⁵

were unable to apply the Fischer indole ring closure to 2-methyl-3-pyridylhydrazone. Süs and Möller⁶ obtained I (R = H) from the photochemical decomposition of 3-diazo-1,7-naphthyridin-4-(3H)one and decomposition of the resulting 3-carboxypyrrolo(2,3-c)pyridine, but the multistep synthesis of the required diazo derivative interferes with the utilization of this method for preparative purposes. Somewhat earlier, Herz and Tocker² had succeeded in synthesizing I (R = H and CH₃) by the Pomeranz-Fritsch method from readily available starting materials, but the yields were very low.

Recent improvements in the Madelung cyclization of 2-formamidotoluene,⁷ the successful preparation of 7-azaindole⁸ by an adaptation of this

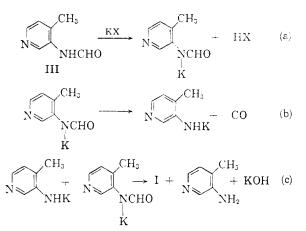
(1) Supported in part by research grant CY-3034 from the National Cancer Institute, National Institutes of Health, U. S. Public Health Service.

(2) Previous paper, W. Herz and S. Tocker, J. Am. Chem. Soc., 77, 6355 (1955).

(3) Abstracted from a thesis, submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, June 1960.

(4) E. Koenigs and A. Fulde, Ber., 60, 2106 (1927).

(5) G. R. Clemo and R. J. W. Holt, J. Chem. Soc., 1313 (1953).


(6) O. Süs and K. Möller, Ann., 599, 233 (1956).

(7) F. T. Tyson, J. Am. Chem. Soc., 72, 2801 (1950).

(8) M. M. Robison and B. L. Robison, J. Am. Chem. Soc., 77, 457 (1955).

method and the availability of 3-amino-4-picoline⁹ suggested that the Madelung cyclization of 3-formamido-4-picoline might give I (R = H) in better yields. The results of such a study are presented here.

3-Amino-4-picoline, prepared by a slightly improved method, was converted to the formamido derivative (III) in 86% yield, but the cyclization, under a variety of conditions, resulted in the isolation of 3-amino-4-picoline only. Tyson's mechanism⁷ for the Madelung cyclization as applied to the case at hand (see scheme below) requires the

formation of equivalent amounts of 3-amino-4picoline and pyrrolo(2,3-c)pyridine by decomposition of the potassium salt of the former; hence it was hoped to direct the reaction toward the formation of I by heating a mixture of the potassium salt of the amine and III in the presence of sodium formate, the latter to repress step b. However, the resulting product consisted entirely of 3-amino-4picoline. It was therefore concluded that the decomposition of the potassium salt of III has a much lower activation energy than the formation of I. In this connection it may be pointed out that while the sodium salt of III, prepared from sodium hydride and III, decomposed below 200°, III itself was stable up to 250° .

It was hoped that cyclization of a diacyl derivative of 3-amino-4-picoline, which cannot form a salt of the amino function and would therefore not undergo decomposition by step b, might occur more readily. The diformamido derivative could not be obtained, but diacetyl-3-amino-4-picoline (IV) was prepared by refluxing the amine in acetic anhydride for four hours. Madelung cyclization of IV with potassium ethoxide gave II-($\mathbf{R} = \mathbf{CH}_3$) in 40% yield. Under the same conditions the monoacetyl derivative gave only a 5% yield although Koenigs and Fulde⁴ claimed 23%. The fact that the diacetyl compound gave higher yields could, however, be partly accounted for on a statistical basis.

(9) H. F. Baumgarten, H. C. Su, and A. L. Krieger, J. Am. Chem. Soc., 76, 596 (1954).